

Photochemical Generation of Dihydrogen Complexes of **Chromium and Tungsten**

Steven L. Matthews and D. Michael Heinekey*

Contribution from the Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700

Received November 22, 2005; E-mail: heinekey@chem.washington.edu

Abstract: Photolysis of solutions of $M(CO)_6$ (M = Cr, W) at low temperature in the presence of hydrogen gas affords $Cr(CO)_5(H_2)$ (1) and $W(CO)_5(H_2)$ (2). Complexes 1 and 2 are characterized as dihydrogen complexes based on short T_1 values for the hydride resonances and the observation of a large HD coupling in the HD derivatives. Irradiation of a phosphine-substituted derivative (PMe₃)Cr(CO)₅ in the presence of hydrogen gas gave similar results. Thus cis-(PMe₃)Cr(CO)₄(H₂) (3) and trans-(PMe₃)Cr(CO)₄(H₂) (4) were prepared and characterized by ¹H and ³¹P NMR spectroscopy. When the photolysis reactions were carried out in methylene chloride, solvent binding competitive with hydrogen binding was observed. This was not observed in less coordinating solvents such as alkanes. Subsequent displacement of solvent by H₂ leads to the dihydrogen complexes. Complexes 1 and 2 are moderately acidic, with deprotonation effected by mild bases.

Introduction

The first examples of isolable transition-metal dihydrogen complexes were reported by Kubas and co-workers over 20 years ago. These complexes are exemplified by tungsten complexes such as W(CO)₃(PR₃)₂(H₂) ($\mathbf{R} = {}^{i}\mathbf{Pr}$; Cy)¹ and their Mo and Cr analogues,² which bind hydrogen relatively weakly and are prepared by displacement of an agostic interaction with H₂ gas. Weak binding of H₂ in these complexes is consistent with moderate elongation of the H–H distance $(d_{\rm HH})$ compared to H₂ gas. Values of $d_{\rm HH} = 0.85(1)$ Å (Cr),² 0.87(1) Å (Mo),³ and 0.89(1) Å (W)³ for these complexes have been determined by solid-state NMR measurements of dipolar coupling.

A number of related species that are apparently not isolable at ambient temperature have been studied under matrix isolation conditions,⁴ in liquid and supercritical xenon,⁵ or by fast spectroscopy methods in alkanes.⁶ The prototypical molecules $M(CO)_5(H_2)$ (M = Cr, Mo, and W) have been observed under such exotic conditions and have been characterized as dihydrogen complexes on the basis of vibrational spectroscopy. While vibrational data such as the detection in the infrared spectrum of the H-H stretching mode can confirm the presence of a dihydrogen ligand, quantitative structural information is lacking. The key structural parameter is the HH distance $(d_{\rm HH})$, which is best determined by diffraction or NMR methods. For

complexes that are not isolable in the solid state, solution NMR spectroscopy becomes the method of choice.

After the pioneering work of Kubas, a large number of dihydrogen complexes have been reported. A wide range of coligands have been employed, including phosphines, cyclopentadienyls, and many other ligand types. Of these diverse complexes, relatively few complexes have been reported of metal centers with a preponderance of strong π -acid ligands such as CO. Hydrogen complexes with coligands consisting largely of CO are of fundamental interest in that these very electrophilic metal centers may bind hydrogen relatively weakly but provide substantial activation of the HH bond toward heterolysis.

These relatively simple molecules may also provide experimental tests for the computational chemistry work that has led to structural predictions in cases where isolation and diffraction analysis is not possible. For example, the best computational results give $d_{\rm HH}$ of ca. 0.80–0.83 Å for M(CO)₅(H₂), slightly shorter than the computed structures for M(CO)₃(PH₃)₂(H₂), which are models for the isolable phosphine-containing complexes. Previous experimental work shows that bisphosphine moieties such as $W(CO)_3(PMe_3)_2$ form dihydride rather than dihydrogen complexes, demonstrating the importance of steric effects in the original work of Kubas and co-workers.⁷

In this work, we present investigations of the structure and reactivity of CO-rich complexes in conventional solvents using NMR spectroscopy. Coordinatively unsaturated species have been generated by photoextrusion of CO, which affords weakly solvated species. Reaction with hydrogen gas leads to hydrogen complexes, which have moderate thermal stability. With this

⁽¹⁾ Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman,

Kubas, G. J., Kyan, K. K., Swanson, D. L., Vergamin, F. J., Wasserman, H. J., J. Am. Chem. Soc. **1984**, *106*, 451–452.
 Kubas, G. J.; Nelson, J. E.; Bryan, J. C.; Eckert, J. E.; Wisniewski, L.; Zilm, K. *Inorg. Chem.* **1994**, *33*, 2954–2960.
 Zilm, K. W.; Millar, J. M. Adv. Magn. Opt. Reson. **1990**, *15*, 163–200.
 Cf. Sweany, R. L. In *Transition Metal Hydrides*; Didieu, A., Ed.; VCH: With the second s

New York, 1992.

⁽⁵⁾ Upmacis, R. K.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc. 1986, 108, $3\hat{6}45 - 3\hat{6}51$

Church, S. P.; Grevels, F. H.; Hermann, H.; Schaffner, K. J. Chem. Soc., (6)Chem. Commun. 1985, 30-32.

⁽⁷⁾ Heinekey, D. M.; Law, J. K.; Schultz, S. M. J. Am. Chem. Soc. 2001, 123, 12728–12729.

Figure 1. Partial (hydride region) ¹H NMR spectra (CD₂Cl₂, 500 MHz, 220 K) of $Cr(CO)_5(H_2)$ **1** (bottom) and $Cr(CO)_5(HD)$ **1**- d_1 (top).

methodology, we have prepared hydrogen complexes of Cr with four CO ligands and one phosphine ligand as well as complexes of Cr and W with only CO coligands. A portion of these results has been previously communicated.⁸

Results

M(CO)₅ **Complexes** (**M** = **Cr**, **W**) Irradiation (Hg arc lamp, Pyrex filter) of a CD₂Cl₂ solution of Cr(CO)₆ at 195 K under 1.5 atm of H₂ gas results in an orange solution. The ¹H NMR spectrum of the orange solution at 220 K shows only one new resonance, a broad singlet ($\nu_{1/2} = 12$ Hz) at -7.44 ppm assigned to Cr(CO)₅(H₂) (**1**). When the reaction is carried out with HD gas, a new 1:1:1 triplet resonance is observed at -7.47 ppm with ¹J_{HD} = 35.8 Hz (Figure 1). Replacement of the H₂ atmosphere over a CD₂Cl₂ solution of **1** with excess D₂ gas (1.5 atm.) resulted in the disappearance from the ¹H NMR spectrum of the resonance assigned to **1** in minutes at 240 K. This is consistent with the formation of **1**-d₂ exclusively without isotopic scrambling to form **1**-d₁. After 24 h at 195 K, **1**-d₁ was detected in solution at a very low concentration.

The spin lattice relaxation time T_1 was measured as a function of temperature for the hydride resonance of **1** at both 500 and 750 MHz. The $T_{1\text{min}}$ values found are 22 and 31 ms, respectively (Figure 2).

The ¹³C NMR signals of **1** are weak at natural abundance. Modest enrichment with ¹³CO allows for facile ¹³C NMR detection. Photolysis of a CD₂Cl₂ solution at 195 K of ¹³COenriched Cr(CO)₆ under H₂ gas shows four new resonances in the carbonyl region of the ¹³C NMR spectrum (Figure 3). These appear as two pairs with an intensity ratio of 1:4. Repeating this experiment in the absence of H₂ gave an orange solution and allowed the assignment of the resonances at 222.5 and 212.3 ppm to the solvent complex Cr(CO)₅(CD₂Cl₂). Addition of hydrogen gas then leads to the formation of **1**, which was confirmed by ¹H NMR spectroscopy. The ¹³C resonances for **1** are at 219.8 and 212.6 ppm. This solvent-coordinated species

Figure 2. Relaxation time (T_1) values for complex 1 as a function of temperature at 500 MHz (\Box) and 750 MHz (\bigcirc).

Figure 3. Partial (carbonyl region) ¹³C NMR spectra (CD₂Cl₂, 500 MHz, 220 K) after photolysis of Cr(CO)₆ (bottom) and subsequent addition of $H_{2(g)}$ (middle), and ¹³C NMR spectrum (CD₂Cl₂, 750 MHz, 210 K) after photolysis of Cr(CO)₆ under $H_{2(g)}$ (top). The large signal at 211.8 ppm is due to Cr(CO)₆.

had been undetected in the ¹H NMR spectrum since the solvent contains no protons.

Photolysis of a CD₂Cl₂ solution of W(CO)₆ at 195 K under H₂ or HD gas results in the formation of W(CO)₅(H₂) (**2**) or W(CO)₅(HD) (**2**- d_1). These complexes are identified by ¹H NMR resonances at -3.88 ppm (**2**) and -3.90 ppm. (**2**- d_1) (Figure 4).

There is an upfield isotopic shift similar to that observed in **1** on deuteration of **2**. A characteristic 1:1:1 triplet is observed for **2**- d_1 with a one-bond coupling ${}^{1}J_{\text{HD}}$ of 35.3 Hz. The presence of ${}^{183}\text{W}$ ($I = {}^{1}/{}_{2}$, 14%) bonded to the H₂ unit produces satellites on the resonances for **2** and **2**- d_1 . This one-bond coupling value ${}^{1}J_{\text{HW}}$ is measured in **2**- d_1 to be 38.2 Hz. Measurement of the T_1 for the dihydrogen resonance in **2** gives results very similar to those obtained for **1**, with $T_{1\text{min}}$ values of 21 ms at 500 MHz and 31 ms at 750 MHz.

The photochemical generation of 1 and 2 can be carried out in other less coordinating solvents such as fluorobenzene, 1,3diflurobenzene, toluene, *n*-pentane, and cyclopentane. For

⁽⁸⁾ Matthews, S. L.; Pons, V.; Heinekey, D. M. J. Am. Chem. Soc. 2005, 127, 850–851.

Figure 4. Partial (hydride region) ¹H NMR spectra (CD₂Cl₂, 500 MHz, 240K) of W(CO)₅(H₂) (**2**) and W(CO)₅(HD) (**2**- d_1).

example, the photolysis of a cyclopentane solution of $Cr(CO)_6$ or $W(CO)_6$ at 195 K under H₂ gas gives colorless solutions. The ¹H NMR spectrum of these solutions shows a broad resonance at high field assigned to complex **1** at -7.90 ppm and **2** at -4.2 ppm. The chemical shifts in this solvent are similar to those in CD_2Cl_2 .

Attempts to isolate solid samples of complexes 1 and 2 were unsuccessful. Monitoring methylene chloride solutions of 1 and 2 by ¹H NMR spectroscopy reveals that 2 decomposes at about 250 K, while complex 1 persists up to approximately 280 K, at which temperature $Cr(CO)_6$ is formed. The Cr and W complexes are apparently more stable than the Mo analogue, since attempts to observe $Mo(CO)_5(H_2)$ by low-temperature photolysis of $Mo(CO)_6$ in the presence of hydrogen under a wide variety of conditions were not successful, even when the irradiation was carried out under 6 atm of H₂.

The chemical reactivity of complexes **1** and **2** is consistent with considerable activation of the bound H₂ ligand with respect to heterolytic cleavage. On addition of excess Et₃N at low temperature to a CD₂Cl₂ solution of **1** or **2**, clean deprotonation of the H₂ ligand is observed. The product of deprotonation of **1** is the dimeric monoanion $[(\mu-H)Cr_2(CO)_{10}]^-$ identified by a characteristic hydride resonance at -19.5 ppm.⁹ Deprotonation of **2** affords the monomeric anion $[W(CO)_5(H)]^-$ also identified from a characteristic ¹H NMR resonance.¹⁰ The dihydrogen ligands of complexes **1** and **2** are also deprotonated upon addition of excess H₂O.

Nonphotochemical methods to synthesize **1** and **2** have been briefly explored. Heating a CD_2Cl_2 solution of $Cr(CO)_5(NMe_3)$ under H_2 at 45 °C overnight results in the formation of $[(\mu-H)-Cr_2(CO)_{10}][HNMe_3]$. It is believed that, after thermal amine dissociation, the solvent-bound species is able to transiently form the dihydrogen complex **1**. In the presence of the liberated amine, complex **1** is readily deprotonated. Performing the same reaction with $W(CO)_5(NMe_3)$ results in decomposition. The dihydrogen complex **2** was also synthesized chemically by treating a CD_2Cl_2 solution of $[W(CO)_5Cl][NMe_4]$ with the chloride abstracting reagent $[SiEt_3][B(C_6F_5)_4]$ under H_2 gas at low temperature. The characteristic ¹H NMR resonance for **2** confirmed its formation. Protonation of a solution of $[W(CO)_5H]$ - $[NMe_4]$ in fluorobenzene with trifluoroacetic acid results in H_2 formation, likely through the intermediacy of **2**.

Figure 5. Partial (hydride region) ¹H NMR spectra (cyclopentane, 500 MHz, 220 K bottom, 240 K top) of the photolysis products of $Cr(CO)_5$ -(PMe₃) under H₂ gas (bottom) and HD gas (top).

Cr(CO)₄(**PMe**₃) **Complexes.** Photolysis of a cyclopentane solution of $Cr(CO)_5(PMe_3)$ at 195 K under 1 atm of H₂ gas results in three broad new resonances in the hydride region of the ¹H NMR spectrum at -7.90, -8.04, and -9.43 ppm (see Figure 5).

The resonance at -7.90 ppm is attributable to complex 1, presumably arising from the photochemical dissociation of PMe₃. The other two signals are present in an approximate 4:1 ratio and both exhibit a small two-bond coupling to a single ³¹P nucleus. Performing the reaction under HD gas results in new ¹H NMR resonances centered at -7.91, -8.05, and -9.45 ppm, with each one split into a 1:1:1 triplet with ${}^{1}J_{HD}$ values of 35.8 Hz (1) and 34.6 and 34.0 Hz. The slower relaxation in the HD isotopomers produces sharper ¹H NMR resonances that more readily reveal the coupling to ${}^{31}P$. The ${}^{2}J_{HP}$ values are \sim 1.5 Hz in the most intense resonance at -8.05 ppm and 3.5 Hz in the other. The most intense new resonance in the ¹H NMR spectrum is assigned to cis-Cr(CO)₄(PMe₃)(H₂) (**3**), arising from photochemical loss of a cis carbonyl ligand. The less intense, higher-field resonance arises from loss of the trans carbonyl ligand and is assigned to trans-Cr(CO)₄(PMe₃)(H₂) (4). Stereochemistry is assigned on the basis of the magnitude of the HP couplings, where the trans coupling is larger than the cis coupling. In the ³¹P NMR spectrum, a resonance for **3** was detected at 8.6 ppm and that for 4 is observed at 21.1 ppm. This assignment is based on the proton assignment and use of a ${}^{1}\text{H}-{}^{31}\text{P}$ heteronuclear multiple quantum coherence (HMQC) sequence to correlate the ¹H NMR resonances to the corresponding resonances in the ³¹P NMR spectrum.

Photolysis of a CD₂Cl₂ solution of Cr(CO)₅(PMe₃) at 195 K under H₂ gives a new broad hydride signal at -7.52 ppm. The preparation carried out under HD gas produces a new resonance at -7.58 ppm with ${}^{1}J_{\text{HD}} = 34.6$ Hz. These resonances are assigned to **3** and **3**- d_1 , respectively. No signal for **1** or **4** is detected. The same value of ${}^{1}J_{\text{HD}}$ is observed for this resonance in cyclopentane solvent and confirms the assignment. The same small ${}^{31}\text{P}$ coupling ${}^{2}J_{\text{HP}}$ of ~ 1.5 Hz is also observed when HD gas is used. The ${}^{31}\text{P}$ NMR spectrum of this solution exhibits a resonance at -8.33 ppm, which is assigned to complex **3**. The relaxation time for the resonance due to bound dihydrogen in **3** was studied as a function of temperature in CD₂Cl₂. The $T_{1\text{min}}$ is found to be 18.5 ms at 500 MHz.

Discussion

 $M(CO)_5(H_2)$ Complexes. The photochemical preparation of complexes 1 and 2 is well precedented in exotic solvent

environments such as liquid xenon. We have now shown that these complexes can be prepared in conventional solvents, which allows for characterization by ¹H NMR spectroscopy, including the measurement of HD couplings. Using the well-established correlation between HD coupling and bond distance ($d_{\rm HH} =$ 1.44–0.168 $J_{\rm HD}$),¹¹ we can determine that $d_{\rm HH}$ is 0.84 Å in complex 1 and 0.85 Å in complex 2. This is the shortest value for $d_{\rm HH}$ reported to date for neutral group 6 complexes. There is one report in the literature of a shorter value of $d_{\rm HH}$ in the Noyori Ru hydrogenation catalyst studied by Bergens and coworkers, where an HD coupling of 37 Hz was reported.¹²

These coupling values can be compared to the value of 34.0 Hz ($d_{\rm HH} = 0.87$ Å) reported for W(CO)₃(PiPr₃)₂(HD). This coupling was originally reported as 33.5 Hz,13 but subsequent higher resolution data gives a value of 34.0 Hz.14 Measurement of $d_{\rm HH}$ by determination of the dipolar coupling in the bound H₂ ligand in W(CO)₃(PCy₃)₂(H₂) by solid-state NMR gives a value of 0.89 Å.3 The HD coupling data for complexes 1 and 2 indicates that the interaction of H_2 with the metal center in these complexes results in slightly less bond elongation in the bound H₂ than in the original Kubas complexes. This is consistent with the lower basicity of the metal centers in the absence of phosphine ligands. Due to the narrower line width exhibited by the hydride signal in $2-d_1$, it is also possible to accurately measure ${}^{1}J_{HW} = 38.2$ Hz (Figure 1). Curiously, this coupling is greater than the value of 33.6 Hz reported for $W(CO)_3(PiPr_3)_2(H_2).^{14}$

The experimentally determined values of $d_{\rm HH}$ for complexes 1 and 2 can be compared to the values reported from computational studies. A comprehensive study by Lledos and co-workers¹⁵ using DFT methods gave values for $d_{\rm HH}$ of ca. 0.81-0.83 Å for M(CO)₃(PH₃)₂(H₂), which are computational models for the Cr, Mo, and W phosphine complexes of Kubas. Kubas has pointed out that $d_{\rm HH}$ is relatively insensitive to the nature of the metal.¹⁶ A more recent study by Frenking and co-workers¹⁷ calculates $d_{\rm HH}$ of ca. 0.86 Å for W(CO)₃(PMe₃)₂- (H_2) , although this complex has been shown experimentally to be a dihydride.⁷ Using the same methodology, Lledos and coworkers calculated $d_{\rm HH}$ of ca. 0.79–0.80 Å for M(CO)₅(H₂), slightly shorter than the values for the phosphine complexes, as expected for less basic metal centers. Frenking and coworkers reported $d_{\rm HH}$ of ca. 0.82–0.83 Å for M(CO)₅(H₂). The calculations seem to somewhat underestimate $d_{\rm HH}$ in the complexes of Kubas and also in complexes 1 and 2.

An independent measure of $d_{\rm HH}$ in 1 and 2 is provided by measurement of the relaxation time T_1 for the dihydrogen resonance in the ¹H NMR spectrum. Rapid dipole-dipole relaxation results from the close proximity of the hydrogen atoms in these complexes. By use of the methodology of Halpern and co-workers,¹⁸ values of $T_{1\min}$ can be used to calculate $d_{\rm HH}$. A complication to this treatment arises when the rotation rate for the bound dihydrogen ligand is faster than the rate of molecular reorientation. Morris and Wittebort have developed a correction factor for this situation, referred to in the literature as the fast spinning correction.¹⁹ Thus T_1 data can lead to two different values for $d_{\rm HH}$, with a shorter distance arising from the fast rotation regime and a longer value resulting if the rotation of bound dihydrogen is slower than molecular reorientation. The vast majority of dihydrogen complexes reported fall in the latter category.14

Analysis of the $T_{1\min}$ data for **1** leads to $d_{\text{HH}} = 0.87$ Å (500 MHz) and 0.86 Å (750 MHz) with the assumption of rapid H_2 rotation. The assumption of slow H₂ rotation gives values of $d_{\rm HH} = 1.09$ Å (500 MHz) and 1.08 Å (750 MHz). A similar analysis for complex 2 gives $d_{\rm HH} = 0.86$ or 1.08 Å. Since the observed values of $J_{\rm HD}$ are only consistent with the shorter values of $d_{\rm HH}$, we conclude that the dihydrogen ligand in 1 and 2 is reorienting very rapidly. This observation is consistent with vibrational spectroscopy in liquid xenon, where Poliakoff and co-workers²⁰ have suggested that the H_2 unit in $Cr(CO)_5(H_2)$ is essentially spinning freely on the basis of the line widths for the $\nu_{\rm HH}$ absorptions in Cr(CO)₅(H₂), Cr(CO)₅(HD), and Cr(CO)₅- (D_2) . An inverse relationship to the moment of inertia was observed.

These complexes are thus quite unusual in exhibiting very rapid H₂ rotation, which we attribute to the 4-fold symmetry of the potential energy surface corresponding to H₂ rotation. The small number of examples in the literature of dihydrogen complexes exhibiting rapid rotation share this 4-fold symmetry.¹⁴ In contrast, the Kubas complexes with two phosphines exhibit somewhat higher barriers to H_2 rotation and values of d_{HH} derived from T_1 data do not fit to the fast rotation regime.

The short $d_{\rm HH}$ values exhibited by complexes 1 and 2 are consistent with a relatively weak interaction between the bound dihydrogen and the metal center. Consistent with this, exposure of solutions of 1 to D_2 leads to very rapid disappearance of the ¹H NMR signal. In the case of complex **1** in methylene chloride, competition between hydrogen binding and solvent binding was directly observable by ¹³C NMR spectroscopy (Figure 2). Under 1 atm of hydrogen gas, approximately equal amounts of complex 1 and $Cr(CO)_5(CD_2Cl_2)$ are observed. Since the concentration of solvent is much greater than the concentration of H_2 , this observation highlights the competence of H₂ as a ligand, clearly binding the $Cr(CO)_5$ fragment more strongly than CD_2Cl_2 . The binding of methylene chloride to similar transition metal centers has been reported in a few cases; for instance, the electrophilic cationic fragments $[Re(CO)_4(PR_3)]^+$ and $[trans-Mn(CO)_3 (P(O_3C_5H_9)_2]^+$ can be isolated as the CH₂Cl₂ adducts and even characterized crystallographically.^{21,22} The rhenium fragment binds methylene chloride so strongly that H₂ coordination cannot be observed in this solvent. The ¹H NMR spectrum of [Re- $(CO)_4(PR_3)(H_2)$ ⁺ could be obtained only in fluorobenzene.²³

- Morris, R. H.; Wittebort, R. J. Magn. Res. Chem. 1997, 35, 243–250.
 Upmacis, R. K.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc. 1986, 108,
- 3645-3651. (21) Fang, X.; Huhmann-Vincent, J.; Scott, B. L.; Kubas, G. J. J. Organomet.
- Chem. 2000, 609, 95-103. (22)Huhmann-Vincent, J.; Scott, B. L.; Kubas, G. J. J. Am. Chem. Soc. 1998,
- 120, 6808-6809. (23)
- Huhmann-Vincent, J.; Scott, B. L.; Kubas, G. J. Inorg. Chim. Acta 1999, 294, 240-254.

⁽¹¹⁾ Luther, T. A.; Heinekey, D. M. Inorg. Chem. 1998, 37, 127-132. A slightly different data set adopted by Morris and co-workers leads to $d_{\rm HH} = 1.42 - 0.167 J_{\rm HD}$ (Maltby, P. A.; Schlaf, M.; Steinbeck, M.; Lough, A. J.; Morris, R. H.; Klooster, W. T.; Koetzle, T. F. Srivastava, R. C. J. Am. Chem. Soc. **1996**, 118, 5396-5407).

<sup>K. G. Inorg. Chem. 1996, 35, 6775–6783.
(15) Tomas, J.; Lledos, A.; Jean, Y. Organometallics 1998, 17, 4932–4939.
(16) Kubas, G. J. Inorg. Chem. 1999, 38, 1069–1084.</sup>

Nemcsok, D. S.; Kovacs, A., Rayon, V. M.; Frenking, G. Organometallics 2002, 21, 5803–5809. (17)

⁽¹⁸⁾ Desrosiers, P. J.; Cai, L. Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 13, 4173-4184

Low-temperature irradiation of W(CO)₆ in CD₂Cl₂ monitored by ¹³C NMR spectroscopy leads to two new carbonyl resonances in a 4:1 ratio. The more intense resonance is at 197.1 ppm (${}^{1}J_{CW}$ = 130 Hz), while the less intense signal is at 200.5 ppm (${}^{1}J_{CW}$ = 180 Hz). These signals are assigned to the equatorial and axial carbonyl groups of W(CO)₅(CD₂Cl₂). When this experiment was carried out in the presence of H_2 , the formation of 2 is confirmed by ¹H NMR spectroscopy, but concentrations of 2 were insufficient for observation by ¹³C NMR spectroscopy. This observation suggests that, like Cr(CO)₅, W(CO)₅ exhibits competitive binding of methylene chloride and hydrogen, but the hydrogen is somewhat less effective relative to the solvent in the case of tungsten.

The bound H_2 ligand in complexes 1 and 2 is significantly activated with respect to heterolytic cleavage, with deprotonation to give the known anions $[(\mu-H)Cr_2(CO)_{10}]^{-9}$ and $[HW(CO)_5]^{-10}$ by Et₃N or excess of H₂O. These results are the first reported example of facile deprotonation of a neutral dihydrogen complex to give an anionic hydride complex. As expected, complexes 1 and 2 are significantly more acidic than the phosphinecontaining analogues reported by Kubas and co-workers.²⁴ The acidity of 1 and 2 is comparable to that observed in cationic dihydrogen complexes,²⁵ confirming that the M(CO)₅ moiety is highly electrophilic.

Phosphine-Containing Complexes. The formation of complexes cis-Cr(CO)₄(PMe₃)(H₂) (3) and trans-Cr(CO)₄(PMe₃)-(H₂) (4) in a 4:1 ratio suggests statistical loss of CO ligands and replacement by hydrogen. These complexes are identified as dihydrogen complexes on the basis of the large HD couplings observed in $3-d_1$ and $4-d_1$.

A surprising feature of these complexes is that the HH distances in these two complexes are nearly identical, as indicated by the HD couplings of 34.6 Hz (3) and 34.0 Hz (4), corresponding to $d_{\rm HH} = 0.86$ Å (3) and $d_{\rm HH} = 0.87$ Å (4). This outcome is at variance with the generally accepted primacy of the nature of the trans ligand in determining the degree of activation of bound dihydrogen. Kubas²⁶ has summarized the extensive literature on this topic by stating that "the influence of the trans ligand on H₂ activation is generally far greater than that of the cis ligand set". Our observations suggest that complexes 1, 3, and 4 have quite similar values of $d_{\rm HH}$. The difference between 1 and 3, where a CO ligand is replaced with a cis-PMe₃, is very small, with the change in ${}^{1}J_{\text{HD}}$ and the corresponding change in $d_{\rm HH}$ being ~ 0.01 Å. More surprising is the similarity of ${}^{1}J_{\text{HD}}$ and thus d_{HH} between complexes 3 and 4, where the change in the trans ligand from CO to PMe₃ seems to have very little effect on $d_{\rm HH}$.

rotation) or $d_{\rm HH} = 1.06$ Å (slow rotation). Only the former value agrees with the distance determined from ${}^{1}J_{\text{HD}}$. We conclude that the perturbation to 4-fold symmetry provided by one cis-PMe₃ ligand is not sufficient to impose a significant barrier to rapid rotation of the bound dihydrogen ligand.

The $T_{1(\min)}$ for the bound dihydrogen ligand in complex **3** is

18.5 ms at 500 MHz. This corresponds to $d_{\rm HH} = 0.84$ Å (fast

Conclusions

Low-temperature photochemistry in conventional solvents allows for the facile preparation of dihydrogen complexes of CO-rich Cr and W moieties previously observed only in liquid xenon. Hydrogen binding is relatively weak but is competitive with solvent binding, allowing both the solvent complex and the dihydrogen complex to be observed. The bound dihydrogen ligand in these molecules exhibits very little bond elongation but is strongly activated toward heterolysis. In Cr complexes with one PMe₃ ligand, the HH distance is surprisingly insensitive to the nature of the ligand trans to coordinated H₂.

Experimental Section

Reagents. $M(CO)_6$ (M = Cr, Mo, W) (Aldrich) compounds were sublimed twice prior to use. CD₂Cl₂ (CIL) and 1,3-difluorobenzene (Avocado) were dried over CaH2 and stored in glass bombs. n-Pentane (HPLC grade, Fischer) and cyclopentane (99+%, Aldrich) were distilled and stirred over concentrated H2SO4 overnight. The H2SO4 was replaced and the procedure was repeated until no discoloration of the H₂SO₄ was observed. The alkanes were washed with 10×20 mL of H₂O and dried over MgSO4 before being stored over NaK alloy under vacuum. Labeled ¹³CO was obtained from Cambridge Isotopes. Me₃NO (Aldrich) was used as received. Cr(CO)₅(PMe₃) was prepared on a 50 mg scale from Cr(CO)₅(NMe₃).

Cr(CO)5(NMe3)/W(CO)5(NMe3).27 A thick-walled glass bomb containing a Teflon-coated stir bar was charged with 0.85 mmol of $M(CO)_6$ (M = Cr, W) and 1 equiv of ONMe₃ in an Ar-filled glovebox. THF (15 mL) was vacuum-transferred at 77 K and the contents were warmed to room temperature. Caution: Evolution of gas generates pressure in this reaction. Precautions should be taken to avoid overpressurizing the reaction vessel. After stirring overnight, the solvent was evaporated under vacuum, affording a brown solid that was extracted with 2×10 mL of pentane. The extracts were combined and cooled to 195 K, precipitating yellow needles of M(CO)₅(NMe₃). The solid was collected by filtration and stored under Ar at 250 K.

 $Cr(^{13}CO)_2(CO)_4$ and $W(^{13}CO)_2(CO)_4.$ A glass bomb fitted with a Teflon stopcock was charged with 200 mg of $M(CO)_6$ (M = Cr, W) in the glovebox. The bomb was pumped onto a vacuum line and evacuated briefly, and THF (10 mL) was added by vacuum transfer. The solution was subjected to irradiation at room temperature and regular freezepump-thaw cycles. After the last freeze-pump-thaw cycle, the bomb was backfilled with ¹³CO_(g) (760 mmHg) and left to stand overnight. The orange solution of M(CO)5(THF) fades to colorless, re-forming M(¹³CO)(CO)₅. This cycle was repeated to give additional enrichment. Isotope incorporation was confirmed by IR and NMR spectroscopy.

Photochemistry. All of the photolysis reactions were carried out at low temperature. This was achieved by directly irradiating the metal carbonyl solution contained in an NMR tube while immersed in a quartz dewar containing an alcohol/dry ice slush at 195 K. Photolysis was performed with a water-jacketed Hanovia 450 W Hg arc lamp with a Corning glass filter (no. 27) with a wavelength cutoff above 400 nm. After irradiation, the NMR tube was inserted into the precooled NMR probe for analysis. A typical procedure for complex 1 is as follows:

⁽²⁴⁾ Van Der Sluys, L. S.; Miller, M. M.; Kubas, G. J.; Caulton, K. G. J. Am. (24) Van Det Sitys, E. S., Willet, M. M., Rubas, G. J., Cautoli, R. G. J. Am. Chem. Soc. 1991, 113, 2513–2520.
(25) Kubas, G. J. Adv. Inorg. Chem. 2004, 56, 127–177.
(26) Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes: Structure, Theory and Reactivity; Kluwer: New York, 2001; p 81.

Heppert, J. A.: Thomas-Miller, M. E.: Schreubel, D. M.: Takusagawa, F.: (27)Morgenstern, M. A.; Shaker, M. R. Organometallics 1989, 8, 1199-1206.

An NMR tube modified to fit a Teflon stopcock was heated to 160 °C overnight and pumped into an argon-filled drybox while still hot. The tube was charged with 3 mg of $Cr(CO)_6$ and the stopcock was fitted before the tube was removed from the glovebox. The tube was pump-cycled onto a vacuum line and evacuated briefly. Approximately 0.5 mL of CD_2Cl_2 (or other solvent) was vacuum-transferred into the tube at 77 K. The sample was warmed to room temperature and backfilled with H₂ gas (~1100 mmHg) and then cooled to 195 K in the quartz dewar.

NMR Spectroscopy. NMR spectra were obtained at 500 and 750 MHz on Bruker Avance spectrometers running xwinnmr 2.6 or 3.5. Low-temperature measurements were made by cooling the probe with a stream of cold $N_{2(g)}$ from a liquid N_2 boil-off evaporator. Samples were inserted after the probe was precooled to the desired temperature. Solvent suppression of cyclopentane was accomplished by use of the DPFGSE-WATERGATE-5 sequence with a pulse sequence delay of between 300 and 125 ms. The second-order nulls under these conditions occur at ± 1666 and ± 4000 Hz. T_1 measurements were made with a standard inversion recovery sequence (180- τ -90). Heteronuclear correlation experiments used a proton-detected HMQC sequence with a refocusing delay set to detect the coupling of interest.

Cr(CO)₅(**H**₂) (1). ¹H NMR (CD₂Cl₂, 220 K) $\delta = -7.44$ ppm (toluene-*d*₈, 200 K), $\delta = -8.83$ ppm (cyclopentane, 185 K), $\delta = -7.90$ ppm. In 1-*d*₁, ¹*J*_{HD} = 35.8 Hz. ¹³C NMR (CD₂Cl₂) $\delta = 219.8$ ppm (1C, *trans*-CO), $\delta = 212.6$ ppm (4C, *cis*-CO).

W(CO)₅(**H**₂) (2). ¹H NMR (CD₂Cl₂, 220 K) $\delta = -3.88$ ppm (toluene- d_8 , 200 K) $\delta = -5.40$ ppm (cyclopentane, 185 K), $\delta = -4.2$ ppm. In 2- d_1 , ¹ $J_{HW} = 38.2$ Hz and ¹ $J_{HD} = 35.3$ Hz.

cis-Cr(CO)₄(PMe₃)(H₂) (3). ¹H NMR (cyclopentane, 220 K) $\delta = -8.04 \text{ ppm} (^{2}J_{\text{HP}} = 1.5 \text{ Hz}). ^{31}\text{P}\{^{1}\text{H}\}$ NMR (cyclopentane, 220 K) $\delta = 8.6 \text{ ppm}.$ In 3- $d_{1}, ^{1}J_{\text{HD}} = 34.6 \text{ Hz}.$

trans-Cr(CO)₄(PMe₃)(H₂) (4). ¹H NMR (cyclopentane, 220 K) δ = -9.43 ppm (²J_{HP} = 3.8 Hz). In 4-*d*₁, ¹J_{HD} = 34.0 Hz. ³¹P{¹H} NMR (cyclopentane, 220 K) δ = 21.1 ppm.

Acknowledgment. This research was supported by the National Science Foundation. Acquisition of the 750 MHz NMR spectrometer was supported by the National Science Foundation and the Murdoch Charitable Trust.

JA057912R